目的 主要研究了硅胶吸附阿维拉霉素的动力学和热力学特性。方法 通过测定不同温度下阿维拉霉素在硅胶上的吸附量,绘制吸附动力学曲线和吸附等温线,并对硅胶吸附阿维拉霉素的动力学和热力学参数进行研究。结果 准二级动力学模型能更好的描述硅胶吸附阿维拉霉素的动力学行为,此吸附过程具有非均相未反应核收缩模型的特征,其中内扩散为主要速率控制步骤;Langmuir方程更好的拟合硅胶吸附阿维拉霉素的吸附等温线,吸附热力学参数吉布斯自由能变(ΔG)在309、303、297 K温度下的值分别为-8.752 9、-8.104 3和-7.455 6 kJ·mol-1,焓变(ΔH)值为24.654 6 kJ·mol-1,熵变(ΔS)值为108.115 2 J·mol-1·K-1。结论 该研究结果为进一步探讨硅胶柱分离纯化阿维拉霉素提供了理论基础。
Abstract
OBJECTIVE To investigate the kinetic and thermodynamic characteristics of adsorption of avilamycin on silica gel. METHODS By measuring the adsorption of avilamycin on silica gel at different temperatures, the adsorption kinetics curves and adsorption isotherm were drawn, and the kinetics and thermodynamic parameters were studied. RESULTS The adsorption of avilamycin on silica gel could be described well by Pseudo-second-order model. The adsorption process had feature of shrinking nonreactive core model, and the internal diffusion was the main rate-limiting step. The equilibrium adsorption data of avilamycin on silica gel fit the Langmuir isotherms well. The thermodynamic parameters were as follows:change in entropy (ΔS) was 108.115 2 J·mol-1·K-1, change in enthalpy (ΔH) was 24.654 6 J·mol-1, and changes in free energy (ΔG) were -8.752 9, -8.104 3, and -7.455 6 J·mol-1 at 309, 303 and 297 K, respectively. CONCLUSION The results of this study provide a theoretical basis for further study on the isolation and purification of high purity avilamycin by silica gel.
关键词
阿维拉霉素 /
硅胶吸附 /
热力学 /
动力学
{{custom_keyword}} /
Key words
avilamycim /
silica gel /
thermodynamics /
kinetics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN Y H, LIU B, ZENG Z G, et al. Resrarrch progress of avilamycin[J]. Feed Ind(饲料工业),2007,28 (14):9-11.
[2] JAKOBSEN I L, KIRPEKAR F, VESTER B,et al. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the ridine 2479 ribose[J]. Mol Microbiol, 2003, 49(2):309-318.
[3] MENOTTA S, FEDRIZZI G, MACR Ì S, et al. Results of avilamycin residues monitoring plans for the experimental use in Italy[J]. Meat Quality Safety, 2008,7(9):1393-1398.
[4] RODGER H, WELLENREITER.Effect of avilamycin on production performance ofbroiler chickens[J]. Feed Res, 2001,(2):33-34.
[5] ZHU C H, HE Y N, HAN Z L, et al. Researching the problem of myceliumclustering in the process of avilamycin bystreptomycin viridocbromogen[J]. Feed Ind(饲料工业), 2006, 27 (4):22-25.
[6] REN J, TONG Y K, WU Z L. Bioynthesis pathway and molecular biology progress of avilamycinv[J]. J Tianjin Agricul Univ(天津农学院学报), 2008,15(3):47-51.
[7] WEITNAUER G, HAUSER G, HOFMANN C, et al. Novel avilamycin derivatives with improved polarity generated by targeted gene disruption[J]. Chem Biol, 2004,11(10):1403-1411.
[8] SONG Y H, ZHU J W, CHEN K, et al. Adsorption kinetics of erythromycin on macroporous resins[J]. J Chem Eng Chin Univ(高校化学工程学报),2008,22(1):23-27.
[9] ZHANG K Y, ZHANG L X, WANG X G, et al. Kinetics of L-alpha glycerylphosphorylcholine adsorption by silica gel and enthalpy change[J]. J Chin Cereals Oils Ass(中国粮油学报), 2016,3(31):47-52.
[10] NIE L R. Ionic liquid-modified silica gel as adsorbents for adsorption and separation of water-soluble phenolic acids from Salvia militiorrhiza Bunge[J]. Sep Purif Technol, 2015,155(11):2-12.
[11] TANG D S. Extraction and Separation of Solanesol from Tobaceo[D]. Hangzhou:Zhejiang University, 2007.
[12] SI C Y, WU S F, XU H D, et al. Effects of water content on the simultaneous purification of PC and PE by silica-gel column chromatography[J]. J Chem Eng Chin Univ(高校化学工程学报), 2005,19(2):143-147.
[13] ZHANG X Y. Determination of the content of alviamycin premix[J]. Chin J Veter Drug(中国兽药杂志), 2001, 35(3):21-23.
[14] JULIE S, ANDREW M, CAROLINE M, et al. Determination of avilamycin A and B in pig faeces by solid phase extraction and reverse-phase HPLC assay[J]. Inter J Antimicrob Agents, 2004, 24(5):511-514.
[15] LEVENSPIEL O. Chemical Reaction Engineering[M]. 2rd Ed. New York:Wiley,1972.
[16] RENAULT F, MORIN C N, GIMBERT F, et al. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of CI acid blue 25 from aqueous solutions[J]. Bio-resource Technol, 2008, 99(16):7573-7586.
[17] HO Y S, MCKAY G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Res, 2000, 34(3):735-742.
[18] LIU G M, ZHENG S R, YIN D Q, et al. Adsorption of aqueous alkylphenol ethoxylate surfactants by mesoporous carbon CMK-3[J]. J Colloid Interface Sci, 2006, 302(1):47-53.
[19] CACERES L, ESCUDEY M, FUENTES E, et al. Modeling the sorption kinetic of metsulfuron-methyl on andisols and ultisols volcanic ash-derived soils: kinetics parameters and solute transport mechanisms[J]. J Hazard Mater, 2010,179(1-3):795-803.
[20] LAUS R, COSTA T G, SZPOGANICZ B. Adsorption and desorption of Cu(Ⅱ), Cd (Ⅱ) and Pb (Ⅱ) ions using chitosan cross-linked withepichlorohydrin-triphosphate as the adsorbent[J]. J Hazard Mater, 2010,183 (1):233-241.
[21] PENG J, LI W T, LIU L X, et al. Phosphorus difusion rate in 2CaO·SiO2 solid particle in dephosphorization slag[J]. J Iron Steel Res(钢铁研究学报), 2016, 28(11):1-5.
[22] LOU S, LIU Y F, BAI Q Q, et al. Adsorption mechanism of macroporous adsorption resins[J]. Proc Chem(化学进展), 2012,24(8):1428-1431.
[23] KHENIFI A, DERRICHE Z, MOUSTY C, et al. Adsorption of glyphosate and glufosinate by Ni2AlNO3 layered double hydroxide[J]. Appl Clay Sci, 2010, 47(3-4):362-371.
[24] RAMESH A, HASEGAWA H, MAKI T, et al. Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Femodified montmorillonite[J]. Sep Purif Technol, 2007,56(1):90-100.
[25] XIE X S, FU R R, WANG B H. Static adsorption properties of D301 resin to palatinyellow GR[J]. J Beijing Inst Clothing Technol(北京服装学院学报:自然科学版), 2011,31(4):39-45.
[26] SREELATHA G, AGREETHA V, PARMAR J, et al. Equilibrium and kinetic studies on reactive dye adsorption using palm shell powder(an agrowaste) and chitosan[J]. J Chem Eng Data, 2011,56(1):35-42.
[27] PAN J M, YAO H, GUAN W, et al. Selective adsorption of 2,6-dichlorophenol by surface imprinted polymers using polyaniline/silica gel composites as functional support: equilibrium, kinetics, thermodynamics modeling[J]. Chem Eng J, 2011,172(6):847-855.
[28] SALEEM M, AFZAL M, QADEER R, et al. Selective adsorption of uranium on activated charcoal from electrolytic solutions[J]. Seaparation Sci Technol,1992,27(2):239-241.
[29] MATA Y N, TORRES E, BLAZQUEZ M L, et al. Gold(Ⅲ) biosorption and bioreduction with the brown alga fucus vesiculosus[J]. J Hanard Mater, 2009,166(2-3):612-618.
[30] HUANG J H. Organo-modification of palygorskite and its application[D]. Wuxi:Jiangnan University, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
食品科学与工程浙江省重中之重一级学科资助(2017SIAR201 );浙江省基础公益研究计划项目资助(LGN18C010001)
{{custom_fund}}